Respuesta :

Here the list of the transformations applied to the parent function, and their effect:

  1. [tex] x^2 \to (2x)^2=4x^2 [/tex]. This causes a horizontal compression of factor 4.
  2. [tex] (2x)^2 \to (2x+6)^2= 4(x+3)^2 [/tex]. This causes a horizontal translation, 3 units to the left.
  3. [tex] (2x+6)^2 \to -(2x+6)^2 [/tex]. This causes a reflection about the x axis.
  4. [tex]-(2x+6)^2 \to -(2x+6)^2+3 [/tex]. This causes a vertical translation, 3 units up

So, if you start from the graph of [tex] y=x^2 [/tex], you have to compress and translate it horizontally, flip it with respect to the x axis, and finally move it up 3 units.