contestada

An electron moves in a circular path perpendicular to a magnetic field of magnitude 0.275 T. If the kinetic energy of the electron is 4.90 10-19 J, find the speed of the electron and the radius of the circular path.

Respuesta :

Answer:

Radius, [tex]r=2.14\times 10^{-5}\ m[/tex]

Explanation:

It is given that,

Magnetic field, B = 0.275 T

Kinetic energy of the electron, [tex]E=4.9\times 10^{-19}\ J[/tex]

Kinetic energy is given by :

[tex]E=\dfrac{1}{2}mv^2[/tex]

[tex]v=\sqrt{\dfrac{2E}{m}}[/tex]

[tex]v=\sqrt{\dfrac{2\times 4.9\times 10^{-19}}{9.1\times 10^{-31}}}[/tex]            

v = 1037749.04 m/s

The centripetal force is balanced by the magnetic force as :

[tex]qvB\ sin90=\dfrac{mv^2}{r}[/tex]

[tex]r=\dfrac{mv}{qB}[/tex]

[tex]r=\dfrac{9.1\times 10^{-31}\times 1037749.04}{1.6\times 10^{-19}\times 0.275 }[/tex]

[tex]r=2.14\times 10^{-5}\ m[/tex]

So, the radius of the circular path is [tex]2.14\times 10^{-5}\ m[/tex]. Hence, this is the required solution.

Answer:

The speed of the electron and the radius of the circular path are [tex]10.38\times10^{5}\ m/s[/tex] and [tex]2.15\times10^{-5}\ m[/tex].

Explanation:

Given that,

Magnetic field = 0.275 T

Kinetic energy [tex]K.E= 4.90\times10^{-19}\ J[/tex]

We need to calculate the speed of the electron

Using kinetic energy

[tex]K.E=\dfrac{1}{2}mv^2[/tex]

[tex]v=\sqrt{\dfrac{2K.E}{m}}[/tex]

Where, m = mass of electron

K.E = kinetic energy

Put the value into the formula

[tex]v= \sqrt{\dfrac{2\times4.90\times10^{-19}}{9.1\times10^{-31}}}[/tex]

[tex]v=10.38\times10^{5}\ m/s[/tex]

We need to calculate the radius of the circular path

Using equation of force on charge in magnetic field

[tex]F = qvB\sin\theta[/tex]....(I)

Using centripetal force

[tex]F=\dfrac{mv^2}{r}[/tex]....(II)

From equation (I) and (II)

[tex]\dfrac{mv^2}{r}=qvB\sin\theta[/tex]

[tex]r=\dfrac{mv^2}{qvB\sin\theta}[/tex]

Put the value into the formula

[tex]r=\dfrac{9.1\times10^{-31}\times10.38\times10^{5}}{1.6\times10^{-19}\times0.275\sin90^{\circ}}[/tex]

[tex]r=\dfrac{9.1\times10^{-31}\times10.38\times10^{5}}{1.6\times10^{-19}\times0.275}[/tex]

[tex]r=2.15\times10^{-5}\ m[/tex]

Hence, The speed of the electron and the radius of the circular path are [tex]10.38\times10^{5}\ m/s[/tex] and [tex]2.15\times10^{-5}\ m[/tex].