Respuesta :
Answer:
Question 1: [tex]P ( B | Y ) = \frac{ P ( B and Y)}{ P (Y)} = \frac{ \frac{2}{16}}{ \frac{4}{16}} = \frac{1}{2}[/tex]
Question 2:
A. [tex]P ( Y | B ) = \frac{ P(Y and B) }{ P(B) } = \frac{ \frac{2}{16} }{ \frac{6}{16} } = \frac{1}{3}[/tex]
B. [tex]P( Z | B ) = \frac{ P ( Z and B)}{ P (B)}= \frac{ \frac{1}{16} }{ \frac{6}{16} } = \frac{1}{6}[/tex]
C. [tex]P((Y or Z)|B) = \frac{ P ((Y or Z) and B)}{P(B)}= \frac{ \frac{3}{16}}{ \frac{6}{16}}= \frac{1}{2}[/tex]
Step-by-step explanation:
Conditional probability is defined by
[tex]P(A|B)= \frac{P(A and B)}{P(B)}[/tex]
with P(A and B) beeing the probability of both events occurring simultaneously.
Question 1:
B: Baseball League Championships won, beeing
[tex]P ( B ) = \frac{ 6 }{16}[/tex]
Y: Championships won by the 10 - 12 years old, beeing
[tex]P ( Y)= \frac{ 4 }{ 16 }[/tex]
then
P( B and Y)= \frac{ 2 }{ 16 }[/tex]
By definition,
[tex]P ( B | Y ) = \frac{ P ( B and Y)}{ P (Y)} = \frac{ \frac{2}{16} }{ \frac{4}{16} } = \frac{1}{2}[/tex]
Question 2.A:
Y: Championships won by the 10 - 12 years old, beeing
[tex]P ( Y)= \frac{ 4 }{ 16 }[/tex]
B: Baseball League Championships won, beeing
[tex]P ( B ) = \frac{ 6 }{16}[/tex]
then
P( B and Y)= \frac{ 2 }{ 16 }[/tex]
By definition,
[tex]P ( Y | B ) = \frac{ P(Y and B) }{ P(B) } = \frac{ \frac{2}{16} }{ \frac{6}{16} } = \frac{1}{3}[/tex]
Question 2.B:
Z: Championships won by the 13 - 15 years old, beeing
[tex]P ( Z)= \frac{ 1 }{ 16 }[/tex]
B: Baseball League Championships won, beeing
[tex]P ( B ) = \frac{ 6 }{16}[/tex]
then
P( Z and B)= \frac{ 1 }{ 16 }[/tex]
By definition,
[tex]P( Z | B ) = \frac{ P ( Z and B)}{ P (B)}= \frac{ \frac{1}{16} }{ \frac{6}{16} } = \frac{1}{6}[/tex]
Question 3.B
Y: Championships won by the 10 - 12 years old, beeing
[tex]P ( Y)= \frac{ 4 }{ 16 }[/tex]
Z: Championships won by the 13 - 15 years old, beeing
[tex]P ( Z)= \frac{ 1 }{ 16 }[/tex]
then
[tex]P (Y or Z) = P(Y) + P(Z) = \frac{6}{16}[/tex]
B: Baseball League Championships won, beeing
[tex]P ( B ) = \frac{ 6 }{16}[/tex]
so
[tex]P((YorZ) and B)= \frac{3}{16}[/tex]
By definition,
[tex]P((Y or Z)|B) = \frac{ P ((Y or Z) and B)}{P(B)}= \frac{ \frac{3}{16}}{ \frac{6}{16}}= \frac{1}{2}[/tex]