Respuesta :
Answer:
perpendicular slope = [tex]\frac{7}{3}[/tex]
Step-by-step explanation:
Calculate the slope m using the slope formula
m = (y₂ - y₁ ) / (x₂ - x₁ )
with (x₁, y₁ ) = (6, - 6) and (x₂, y₂ ) = (- 1, - 3)
m = [tex]\frac{-3+6}{-1-6}[/tex] = [tex]\frac{3}{-7}[/tex] = - [tex]\frac{3}{7}[/tex]
Given slope m then the slope of a perpendicular line is
[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{-\frac{3}{7} }[/tex] = [tex]\frac{7}{3}[/tex]
as you saw on the previous posting, the slope of those points is -3/7, and any line perpendicular to it will have a negative reciprocal slope to that one.
[tex]\bf \stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{-\cfrac{3}{7}}\qquad \qquad \qquad \stackrel{reciprocal}{-\cfrac{7}{3}}\qquad \stackrel{negative~reciprocal}{\cfrac{7}{3}}}[/tex]