Respuesta :

Answer:

The area of Rectangle with given vertices is  6 unit ²

Step-by-step explanation:

Given points of vertices of rectangle as :

A = ( - 4, 0)

B = ( - 3 , 1)

C = ( 0 , - 2)

D = ( - 1 , - 3)

Now the measure of side AB = [tex]\sqrt{(x_2 - x_1)^{2} + (y_2 - y_1)^{2}}[/tex]

So,                                      AB =  [tex]\sqrt{( - 3 + 4)^{2} + (1 - 0)^{2}}[/tex]

                                          AB =  [tex]\sqrt{2}[/tex] unit

The measure of side BC = [tex]\sqrt{(x_2 - x_1)^{2} + (y_2 - y_1)^{2}}[/tex]

                                   BC =  [tex]\sqrt{(0 +3)^{2} + (- 2 - 1)^{2}}[/tex]  

                                  BC = 3[tex]\sqrt{2}[/tex]   unit

The measure of side CD = [tex]\sqrt{(x_2 - x_1)^{2} + (y_2 - y_1)^{2}}[/tex]

                               CD =  [tex]\sqrt{( - 1 - 0)^{2} + ( - 3 + 2)^{2}}[/tex]

                                   CD = [tex]\sqrt{2}[/tex] unit

The measure of side DA =  [tex]\sqrt{(x_2 - x_1)^{2} + (y_2 - y_1)^{2}}[/tex]

                                   DA = [tex]\sqrt{(- 4 + 1)^{2} + (0 + 3)^{2}}[/tex]

                                   DA = 3[tex]\sqrt{2}[/tex]   unit

So, the measure of side AB = The measure of side CD = [tex]\sqrt{2}[/tex] unit

And The measure of side BC = The measure of side DA = 3[tex]\sqrt{2}[/tex]   unit

So, Let Length = AB = CD

And Width  = BC = DA

∴ The area of Rectangle = Length × Width   unit²

Or, The area of Rectangle = AB × BC

So, The area of Rectangle = [tex]\sqrt{2}[/tex] unit × 3[tex]\sqrt{2}[/tex]   unit

∴ The area of Rectangle = 6 unit ²

Hence The area of Rectangle with given vertices is  6 unit ² Answer