Acetylene gas (ethyne; HC≡CH) burns with oxygen in an oxyacetylene torch to produce carbon dioxide, water vapor, and the heat needed to weld metals. The heat of combustion for acetylene is −1259 kJ/mol. Calculate the C≡C bond energy.

Respuesta :

Answer:

Approximately [tex]\rm 810\; kJ \cdot mol^{-1}[/tex].

Assumption: [tex]-1259\; \rm kJ \cdot mol^{-1}[/tex] measures the enthalpy change of the reaction [tex]\displaystyle \rm C_2H_2\, (g) + \frac{5}{2}\, O_2\, (g) \to 2\, CO_2\, (g) + H_2O\, (\textbf{g})[/tex] where the water is in its gaseous state (as "water vapor.")

Explanation:

The heat of combustion of a substance gives the enthalpy change when one mole of that substance reacts with excess oxygen.

Start by balancing the equation for the complete combustion of ethyne [tex]\rm \text{H-C $\equiv$ C-H}[/tex] in oxygen [tex]\rm O_2\, (g)[/tex].

[tex]\displaystyle \rm 2 \, C_2H_2\, (g) + 5\, O_2\, (g) \to 4\, CO_2\, (g) + 2\, H_2O\, (g)[/tex].

Set coefficient of [tex]\rm \text{H-C $\equiv$ C-H}[/tex] should be equal to one. Simply divide all coefficients by the coefficient of [tex]\rm \text{H-C $\equiv$ C-H}[/tex].

[tex]\displaystyle \rm C_2H_2\, (g) + \frac{5}{2}\, O_2\, (g) \to 2\, CO_2\, (g) + H_2O\, (\textbf{g})[/tex].

The enthalpy change of a reaction like this one is equal to

  • The energy of bonds broken, minus
  • The energy of bonds formed.

If the energy of bonds formed is greater than that of the bonds broken, the reaction would be exothermic and [tex]\Delta H[/tex] should be negative.

In each mole of this reaction, bonds broken include:

  • [tex]2 \times \rm C - H[/tex] bonds,
  • [tex]1 \times \rm C\equiv C[/tex] bond, and
  • [tex]\dfrac{5}{2}\times \rm O=O[/tex] bonds.

In each mole of this reaction, bonds formed include:

  • [tex]2 \times 2\times \rm C=O[/tex] bonds (each [tex]\rm CO_2[/tex] molecule contains two such bonds,) and
  • [tex]2 \times \rm H-O[/tex] bonds.

Hence

[tex]\begin{aligned}& \Delta H \cr =&E(\text{Bonds Broken}) - E(\text{Bonds Formed}) \cr =& 2\times E(\rm C-H) + E(\rm C\equiv C) + \dfrac{5}{2} \times E(\rm O=O)\cr & \phantom{=} - 2 \times E(\rm C=O) - E(\rm H-O) \end{aligned}[/tex].

Rewrite the equation to isolate the unknown [tex]E(\rm C\equiv C)[/tex]:

[tex]\begin{aligned}& E(\rm C\equiv C) \cr = &\Delta H - 2\times E(\rm C-H) - \dfrac{5}{2} \times E(\rm O=O) \cr &\phantom{=} + 2 \times E(\rm C=O) + E(\rm H-O) \end{aligned}[/tex].

Look up the bond energy for these bonds (except for the unknown carbon-carbon triple bond)

[tex]\begin{aligned}& E(\rm C\equiv C) \cr = &\Delta H - 2\times E(\rm C-H) - \dfrac{5}{2} \times E(\rm O=O) \cr &\phantom{=} + 2 \times E(\rm C=O) + E(\rm H-O) \cr =& (-1259) + (2 \times 2 \times (804) + 2 \times (463)) \cr &\phantom{=}- (2 \times 414 + 5/2 \times 498)\cr =& 810\, \rm kJ \cdot mol^{-1}\end{aligned}[/tex].