A single-turn plane loop of wire with a cross-sectional area 200 cm2 is perpendicular to a magnetic field that increases uniformly from 0.200 T to 2.800 T in 2.20 seconds. What is the magnitude of the induced current if the resistance of the coil is 8.00 Ω?

Respuesta :

Answer:

Induced current,[tex]I=2.87\times 10^{-3}\ A[/tex]                                        

Explanation:

Given that,

Area of cross section of the wire, [tex]A=200\ cm^2=0.02\ m^2[/tex]

Time, t = 2.2 s

Initial magnetic field, [tex]B_i=0.2\ T[/tex]

Final magnetic field, [tex]B_f=2.8\ T[/tex]

Resistance of the coil, R = 8 ohms

The expression for the induced emf is given by :

[tex]\epsilon=-\dfrac{d\phi}{dt}[/tex]

[tex]\phi[/tex] = magnetic flux

[tex]\epsilon=-\dfrac{d(BA)}{dt}[/tex]

[tex]\epsilon=A\dfrac{d(B)}{dt}[/tex]

[tex]\epsilon=A\dfrac{B_f-B_i}{t}[/tex]

[tex]\epsilon=0.02\times \dfrac{2.8-0.2}{2.2}[/tex]

[tex]\epsilon=-0.023\ volts[/tex]

So, the induced emf in the loop is 0.023 volts. The induced current can be calculated using Ohm's law as :

[tex]\epsilon= IR[/tex]

[tex]I=\dfrac{\epsilon}{R}[/tex]

[tex]I=\dfrac{0.023}{8}[/tex]

[tex]I=2.87\times 10^{-3}\ A[/tex]

So, the magnitude of the induced current in the loop of wire is [tex]2.87\times 10^{-3}\ A[/tex]. Hence, this is the required solution.