PLZ FAST Solve for x in the equation 2 x squared minus 5 x + 1 = 3. x = five-halves plus-or-minus StartFraction StartRoot 29 EndRoot Over 2 EndFraction x = five-halves plus-or-minus StartFraction StartRoot 41 EndRoot Over 4 EndFraction x = five-fourths plus-or-minus StartFraction StartRoot 29 EndRoot Over 2 EndFraction x = five-fourths plus-or-minus StartFraction StartRoot 41 EndRoot Over 4 EndFraction

Respuesta :

Answer:

[tex]\frac{5}{4} +/-\frac{\sqrt{41} }{4}[/tex]

Step-by-step explanation:

We re-write the equation subtracting from both sides 3, so as to get a quadratic expression equal to zero and be able to use the quadratic formula to solve it:

[tex]2x^2-5x+1=3\\2x^2-5x+1-3=0\\2x^2-5x-2=0[/tex]

Now we use the quadratic formula considering that [tex]a=2, b=-5,\,and\,\,c=-2[/tex]

[tex]x=\frac{-b+/-\sqrt{b^2-4\,a\,c} }{2\,a} \\x=\frac{-(-5)+/-\sqrt{(-5)^2-4\,(2)\,(-2)} }{2\,(2)} \\\\x=\frac{5+/-\sqrt{25+16} }{4} \\x=\frac{5+/-\sqrt{41} }{4} \\x=\frac{5}{4} +/-\frac{\sqrt{41} }{4}[/tex]

Answer:

Option D

Step-by-step explanation:

Took the test, its correct