Respuesta :

Answer:

[tex]x=0.5(+/-)2.5i[/tex]

Step-by-step explanation:

we know that

The zeros of he function or x-intercepts are the values of x when the function is equal to zero

so

For f(x)=0

we have

[tex]2x^{2} -2x+13=0[/tex]

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]2x^{2} -2x+13=0[/tex]

so

[tex]a=2\\b=-2\\c=13[/tex]

substitute in the formula

[tex]x=\frac{-(-2)(+/-)\sqrt{-2^{2}-4(2)(13)}} {2(2)}[/tex]

[tex]x=\frac{2(+/-)\sqrt{-100}} {4}[/tex]

Remember that

[tex]i=\sqrt{-1}[/tex]

so

[tex]x=\frac{2(+/-)10i} {4}[/tex]

[tex]x=0.5(+/-)2.5i[/tex]

The function has no real solutions (complex solutions)

That means, the function do not intersect the x-axis