Use the de Broglie's Wave Equation to find the wavelength of an electron moving at 7.3 × 106 m/s. Please show your work. Note: h = Plank's constant (6.62607 x 10-34 J s)

Respuesta :

Answer:

[tex]\lambda=9.96\times 10^{-11}\ m[/tex]

Explanation:

The expression for the deBroglie wavelength is:

[tex]\lambda=\frac {h}{m\times v}[/tex]

Where,  

[tex]\lambda[/tex] is the deBroglie wavelength  

h is Planck's constant having value [tex]6.62607\times 10^{-34}\ Js[/tex]

m is the mass of electron having value [tex]9.11\times 10^{-31}\ kg[/tex]

v is the speed of electron.

Given that v = [tex]7.3\times 10^6\ m/s[/tex]

Applying in the equation as:

[tex]\lambda=\frac {h}{m\times v}[/tex]

[tex]\lambda=\frac{6.62607\times 10^{-34}}{9.11\times 10^{-31}\times 7.3\times 10^6}\ m[/tex]

[tex]\lambda=\frac{10^{-34}\times \:6.626}{10^{-25}\times \:66.503}\ m[/tex]

[tex]\lambda=\frac{6.626}{10^9\times \:66.503}\ m[/tex]

[tex]\lambda=9.96\times 10^{-11}\ m[/tex]

[tex]\lambda = 9.96 X 10^{-11}[/tex]m is the wavelength of an electron moving at 7.3 × [tex]10^{6}[/tex] m/s.

What is wavelength?

Wavelength is the distance between identical points (adjacent crests) in the adjacent cycles of a waveform signal propagated in space or along a wire.

The expression for the deBroglie wavelength is:

[tex]\lambda =\frac{h}{m \:X \:\nu}[/tex]

Where,  

[tex]\lambda[/tex] is the deBroglie wavelengt.

h is Planck's constant having value 6.62607 X [tex]10^{-34}[/tex] Js

m is the mass of electron having value 9.11 X [tex]10^{-31}[/tex] kg

v is the speed of electron.

Given that v = 7.3 X [tex]10^{6}[/tex] m/s

Applying in the equation as:

[tex]\lambda =\frac{h}{m \:X \:\nu}[/tex]

[tex]\lambda =\frac{6.62607 X 10^{-34} }{9.11 X 10^{-31} \:X \:7.3 X 10^{6} }[/tex]

[tex]\lambda = 9.96 X 10^{-11}[/tex] m

Hence, [tex]\lambda = 9.96 X 10^{-11}[/tex]m is the wavelength of an electron moving at 7.3 × [tex]10^{6}[/tex] m/s.

Learn more about wavelength here:

https://brainly.com/question/14170659

#SPJ5