Answer:
[tex]\frac{35}{48}[/tex]
Step-by-step explanation:
Probability:[tex]Probability=\frac{favourable\ outcome}{total\ outcome}[/tex]
Probability of NOT 6:
[tex]Total\ outcomes=\{1,2,3,4,5,6\}\\\\Number\ of\ total\ outcomes=6\\\\Favourable\ Outcomes= NOT\ 6=\{1,2,3,4,5\}\\\\Number\ of\ favourable\ outcomes=5\\\\P(NOT\ 6)=\frac{5}{6}[/tex]
Probability of NOT H:
[tex]Total\ outcomes=\{A,B,C,D,E,F,G,H\}\\\\Number\ of\ total\ outcomes=8\\\\Favourable\ Outcomes= NOT\ H=\{A,B,C,D,E,F,G\}\\\\Number\ of\ favourable\ outcomes=7\\\\P(NOT\ H)=\frac{7}{8}[/tex]
Probability of NOT 6 and NOT H:
[tex]Both\ events\ are\ independent\\\\P(NOT\ 6\ and\ NOT\ H)=P(NOT\ 6)\times P(NOT\ H)\\\\P(NOT\ 6\ and\ NOT\ H)=\frac{5}{6}\times \frac{7}{8}\\\\P(NOT\ 6\ and\ NOT\ H)=\frac{35}{48}[/tex]