Answer:
[tex]F=4047408940.35\ N[/tex]
Explanation:
Given:
length of upper base of trapezoid, [tex]u=108\ m[/tex]
length of lower base of trapezoid, [tex]l=44\ m[/tex]
height of the trapezoid, [tex]y=114\ m[/tex]
water level from the top of the dam, [tex]h'=35\ m[/tex]
The depth of water from the base of the dam wall:
[tex]d=y-h'[/tex]
[tex]d=114-35[/tex]
[tex]d=79\ m[/tex]
Now the pressure on the dam wall due to water upto the given level:
[tex]P=\rho.g.d[/tex]
[tex]P=1000\times 9.8\times 79[/tex]
[tex]P=774200\ Pa[/tex]
Now refer the schematic for the area on which the water pressure acts.
Now we have the area as:
[tex]A=\frac{1}{2}\time (sum\ of\ parallel\ sides)\times height[/tex]
[tex]A=0.5(44+ 44.3509+44)\times 79[/tex]
[tex]A=5227.8596\ m^2[/tex]
Now the force on the dam wall can be given as:
[tex]F=P.A[/tex]
[tex]F=774200\times 5227.8596[/tex]
[tex]F=4047408940.35\ N[/tex]