Respuesta :

Answer:

[tex]\int\ {(3x^2-2x+1)\,(x^3-x^2+x)^7} \, dx = \frac{1}{8} (x^3-x^2+x)^8+C[/tex]

tep-by-step explanation:

In order to find the integral:

[tex]\int\ {(3x^2-2x+1)\,(x^3-x^2+x)^7} \, dx[/tex]

we can do the following substitution:

Let's call

[tex]u=(x^3-x^2+x)[/tex]

Then

[tex]du = (3x^2-2x+1) dx[/tex]

which allows us to do convert the original integral into a much simpler one of easy solution:

[tex]\int\ {(3x^2-2x+1)\,(x^3-x^2+x)^7} \, dx = \int\ {u^7 \, du = \frac{1}{8} \,u^8 +C[/tex]

Therefore, our integral written in terms of "x" would be:

[tex]\int\ {(3x^2-2x+1)\,(x^3-x^2+x)^7} \, dx = \frac{1}{8} (x^3-x^2+x)^8+C[/tex]