A 5.50-kg bowling ball moving at 9.00 m/s collides with a 0.850-kg bowling pin, which is scattered at an angle of 85.0 0 to the initial direction of the bowling ball and with a speed of 15.0 m/s. (a) Calculate the final velocity (magnitude and direction) of the bowling ball.

Respuesta :

Answer:

9.05 m/s ,   -14.72°  (respect to x axis)

Explanation:

To find the final velocity of the bowling ball you take into account the conservation of the momentum for both x and y component of the total momentum. Then, you have:

[tex]p_{xi}=p_{xf}\\\\p_{yi}=p_{yf}\\\\[/tex]

[tex]m_1v_{1xi}+m_2v_{2xi}=m_1v_1cos\theta+m_2v_{2}cos\phi\\\\0=m_1v_1sin\theta-m_2v_2sin\phi[/tex]

m1: mass of the bowling ball = 5.50 kg

m2: mass of the bowling pin = 0.850 kg

v1xi: initial velocity of the bowling ball = 9.0 m/s

v2xi: initial velocity of bowling pin = 0m/s

v1: final velocity of bowling ball = ?

v2: final velocity of bowling pin = 15.0 m/s

θ: angle of the scattered bowling pin = ?

Φ: angle of the scattered bowling ball = 85.0°

Where you have used that before the bowling ball hits the pin, the y component of the total momentum is zero.

First you solve for v1cosθ in the equation for the x component of the momentum:

[tex]v_1cos\theta=\frac{m_1v_{1xi}-m_2v_2cos\phi}{m_1}\\\\v_1cos\theta=\frac{(5.50kg)(9.0m/s)-(0.850kg)(15.0m/s)cos85.0\°}{5.50kg}\\\\v_1cos\theta=8.79m/s[/tex]

and also you solve for v1sinθ in the equation for the y component of the momentum:

[tex]v_1sin\theta=\frac{(0.850kg)(15.0m/s)sin(85.0\°)}{5.50kg}\\\\v_1sin\theta=2.3m/s[/tex]

Next, you divide v1cosθ and v1sinθ:

[tex]\frac{v_1sin\theta}{v_1cos\theta}=tan\theta=\frac{2.3}{8.79}=0.26\\\\\theta=tan^{-1}(0.26)=14.72[/tex]

the direction of the bawling ball is -14.72° respect to the x axis

The final velocity of the bawling ball is:

[tex]v_1=\frac{2.3m/s}{sin\theta}=\frac{2.3}{sin(14.72\°)}=9.05\frac{m}{s}[/tex]

hence, the final velocity of the bawling ball is 9.05 m/s