Use the given data to find the minimum sample size required to estimate the population proportion. Margin of error: 0.028; confidence level: 99%; p and q unknown

Respuesta :

Answer:

The minimum sample size is [tex]n = 2123[/tex]

Step-by-step explanation:

From the question we are told that

    The margin of error is  [tex]E = 0.028[/tex]

   

Given that the confidence level is  99% then the level of significance is evaluated as

        [tex]\alpha = 100 - 99[/tex]

        [tex]\alpha = 1 \%[/tex]

        [tex]\alpha =0.01[/tex]

Next we obtain the critical value of  [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table

   The  value is  [tex]Z_{\frac{ \alpha }{2} } = 2.58[/tex]

Now let  assume that the sample proportion is  [tex]\r p = 0.5[/tex]

  hence  [tex]\r q = 1 - \r p[/tex]

=>            [tex]\r q = 0.50[/tex]

   Generally the sample size is mathematically represented as

                [tex]n =[ \frac{Z_{\frac{ \alpha }{2} }}{ E} ]^2 * \r p * \r q[/tex]

                [tex]n =[ \frac{2.58}{ 0.028} ]^2 * 0.5 * 0.5[/tex]

              [tex]n = 2123[/tex]