Hungry Harry is a giant ogre with an even bigger appetite. After Harry wakes up from hibernation, his daily hunger H(t)H(t)H, left parenthesis, t, right parenthesis (in \text{kg}kgstart text, k, g, end text of pigs) as a function of time ttt (in hours) can be modeled by a sinusoidal expression of the form a\cdot\cos(b\cdot t)+da⋅cos(b⋅t)+da, dot, cosine, left parenthesis, b, dot, t, right parenthesis, plus, d. When Harry wakes up at t=0t=0t, equals, 0, his hunger is at a maximum, and he desires 30 \text{ kg}30 kg30, start text, space, k, g, end text of pigs. Within 222 hours, his hunger subsides to its minimum, when he only desires 15 \text{ kg}15 kg15, start text, space, k, g, end text of pigs. Find H(t)H(t)H, left parenthesis, t, right parenthesis. \textit{t}tstart text, t, end text should be in radians.

Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

Harry's  hunger is  [tex]H(t) = 7.5 cos (\frac{\pi}{2} t ) + 22.5[/tex]

Step-by-step explanation:

From the question we are told

 The  hunger of harry is  [tex]H(t) = a \cdot cos (b \cdot t ) + d[/tex]    

 The hunger of harry is  maximum at  t =  0  

 The hunger of harry is minimum at  t =  2 hours

 The mass of pig desires at maximum hunger is [tex]H(0) = 30 \ kg[/tex]

 The mass of  pig desires at minimum hunger is  [tex]H(2) = 15 \ kg[/tex]

Generally at maximum hunger we have

        [tex]H(0) = a * cos (b* 0 ) +d = 30[/tex]

=>       [tex]a * cos (0 ) +d = 30[/tex]

=>       [tex]a + d = 30 --- [1][/tex]

Now  at minimum hunger

          [tex]H(2) = a* cos (2 b ) + d = 15[/tex]

          [tex]a* cos (2 b ) + d = 15[/tex]

Generally the  minimum value of  [tex]cos (\theta ) = -1[/tex]

So

  At minimum

                 [tex]cos (2b) = -1[/tex]

=>              [tex]2b = cos^{-1} [-1][/tex]      

Generally from trigonometric rules

                [tex]cos^{-1} [-1] = (2n + 1 )\pi[/tex]    here  n =  0 , 1 , 2 , 3  

Now since we are considering the minimum  =  0  

   So  

           [tex]cos^{-1} [-1] = (2(0)+ 1 )\pi[/tex]

=>        [tex]cos^{-1} [-1] = \pi[/tex]

So

           [tex]2b = \pi[/tex]

=>         [tex]b = \frac{\pi }{2 }[/tex]      

So

       [tex]a* cos (\pi ) + d = 15[/tex]

=>     [tex]-a + d = 15 --- [2][/tex]

Adding  [tex]equation\ (1 ) \ and \ (2)[/tex]

     [tex]=> \ 2d = 45[/tex]

      =>  [tex]d = 22.5[/tex]  

From equation 1

        [tex]a + 22.5 = 30[/tex]

=>     [tex]a = 7.5[/tex]

So we can represent the harry hunger as  

       [tex]H(t) = 7.5 cos (\frac{\pi}{2} t ) + 22.5[/tex]

       

   

Ver imagen okpalawalter8