Respuesta :
Answer:
a) The magnitude of the friction force is 55.851 newtons, b) The speed of the crate when it reaches the bottom of the ramp is 2.526 meters per second.
Explanation:
a) This situation can be modelled by the Principle of Energy Conservation and the Work-Energy Theorem, where friction represents the only non-conservative force exerting on the crate in motion. Let consider the bottom of the straight ramp as the zero point. The energy equation for the crate is:
[tex]U_{g,1}+K_{1} = U_{g,2}+K_{2}+ W_{fr}[/tex]
Where:
[tex]U_{g,1}[/tex], [tex]U_{g,2}[/tex] - Initial and final gravitational potential energy, measured in joules.
[tex]K_{1}[/tex], [tex]K_{2}[/tex] - Initial and final translational kinetic energy, measured in joules.
[tex]W_{fr}[/tex] - Work losses due to friction, measured in joules.
By applying the defintions of translational kinetic and gravitational potential energies and work, this expression is now expanded:
[tex]m\cdot g \cdot y_{1} + \frac{1}{2}\cdot m\cdot v_{1}^{2} = m\cdot g \cdot y_{2} + \frac{1}{2}\cdot m\cdot v_{2}^{2} + \mu_{k}\cdot m \cdot g \cdot \cos \theta[/tex]
Where:
[tex]m[/tex] - Mass of the crate, measured in kilograms.
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
[tex]y_{1}[/tex], [tex]y_{2}[/tex] - Initial and final height of the crate, measured in meters.
[tex]v_{1}[/tex], [tex]v_{2}[/tex] - Initial and final speeds of the crate, measured in meters per second.
[tex]\mu_{k}[/tex] - Kinetic coefficient of friction, dimensionless.
[tex]\theta[/tex] - Ramp inclination, measured in sexagesimal degrees.
The equation is now simplified and the coefficient of friction is consequently cleared:
[tex]y_{1}-y_{2}+\frac{1}{2\cdot g}\cdot (v_{1}^{2}-v_{2}^{2}) = \mu_{k}\cdot \cos \theta[/tex]
[tex]\mu_{k} = \frac{1}{\cos \theta} \cdot \left[y_{1}-y_{2}+\frac{1}{2\cdot g}\cdot (v_{1}^{2}-v_{2}^{2}) \right][/tex]
The final height of the crate is:
[tex]y_{2} = (1.6\,m)\cdot \sin 30^{\circ}[/tex]
[tex]y_{2} = 0.8\,m[/tex]
If [tex]\theta = 30^{\circ}[/tex], [tex]y_{1} = 0\,m[/tex], [tex]y_{2} = 0.8\,m[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]v_{1} = 5\,\frac{m}{s}[/tex] and [tex]v_{2} = 0\,\frac{m}{s}[/tex], the coefficient of friction is:
[tex]\mu_{k} = \frac{1}{\cos 30^{\circ}}\cdot \left\{0\,m-0.8\,m+\frac{1}{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)}\cdot \left[\left(5\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}\right] \right\}[/tex]
[tex]\mu_{k} \approx 0.548[/tex]
Then, the magnitude of the friction force is:
[tex]f =\mu_{k}\cdot m\cdot g \cdot \cos \theta[/tex]
If [tex]\mu_{k} \approx 0.548[/tex], [tex]m = 12\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex] and [tex]\theta = 30^{\circ}[/tex], the magnitude of the force of friction is:
[tex]f = (0.548)\cdot (12\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot \cos 30^{\circ}[/tex]
[tex]f = 55.851\,N[/tex]
The magnitude of the force of friction is 55.851 newtons.
b) The energy equation of the situation is:
[tex]m\cdot g \cdot y_{1} + \frac{1}{2}\cdot m\cdot v_{1}^{2} = m\cdot g \cdot y_{2} + \frac{1}{2}\cdot m\cdot v_{2}^{2} + \mu_{k}\cdot m \cdot g \cdot \cos \theta[/tex]
[tex]y_{1}+\frac{1}{2\cdot g}\cdot v_{1}^{2} =y_{2} + \frac{1}{2\cdot g}\cdot v_{2}^{2} + \mu_{k}\cdot \cos \theta[/tex]
Now, the final speed is cleared:
[tex]y_{1}-y_{2}+ \frac{1}{2\cdot g}\cdot v_{1}^{2} -\mu_{k}\cdot \cos \theta= \frac{1}{2\cdot g}\cdot v_{2}^{2}[/tex]
[tex]2\cdot g \cdot (y_{1}-y_{2}-\mu_{k}\cdot \cos \theta) + v_{1}^{2} = v_{2}^{2}[/tex]
[tex]v_{2} = \sqrt{2\cdot g \cdot (y_{1}-y_{2}-\mu_{k}\cdot \cos \theta)+v_{1}^{2}}[/tex]
Given that [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]y_{1} = 0.8\,m[/tex], [tex]y_{2} = 0\,m[/tex], [tex]\mu_{k} \approx 0.548[/tex], [tex]\theta = 30^{\circ}[/tex] and [tex]v_{1} = 0\,\frac{m}{s}[/tex], the speed of the crate at the bottom of the ramp is:
[tex]v_{2}=\sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot [0.8\,m-0\,m-(0.548)\cdot \cos 30^{\circ}]+\left(0\,\frac{m}{s} \right)^{2}}[/tex]
[tex]v_{2}\approx 2.526\,\frac{m}{s}[/tex]
The speed of the crate when it reaches the bottom of the ramp is 2.526 meters per second.