Answer:
[tex]C_{C_4H_6}=0.179M[/tex]
Explanation:
Hello,
In this case, the undergoing chemical reaction is:
[tex]2C_4H_6\rightarrow C_8H_{12}[/tex]
And the rate law is:
[tex]\frac{dC_{C_4H_6}}{dt}=kC_{C_4H_6}^2[/tex]
Which integrated is:
[tex]\frac{1}{C_{C_4H_6}} =\frac{1}{C_{C_4H_6}^0}+kt[/tex]
In such a way, the concentration after 10.0 min is:
[tex]\frac{1}{C_{C_4H_6}} =\frac{1}{0.200M}}+5.76x10^{-2}\frac{L}{mol*min}*10.0min\\ \\\frac{1}{C_{C_4H_6}}=5.58\frac{L}{mol} \\\\C_{C_4H_6}=\frac{1}{5.58\frac{L}{mol} } \\\\C_{C_4H_6}=0.179M[/tex]
Regards.