Answer:
[tex](x^2-3^2)(x+3)[/tex]
[tex](x-3)(x+3)(x+3)[/tex]
[tex](x-3)(x+3)^2[/tex]
Step-by-step explanation:
Given
[tex](x^2-9)(x+3)[/tex]
Required
Select 3 equivalent expressions
[tex](x^2-9)(x+3)[/tex]
Express 9 as 3^2
[tex](x^2-3^2)(x+3)[/tex] --- This is one equivalent expression
Take [tex]x^2 - 3^2[/tex] as difference of two squares
[tex](x-3)(x+3)(x+3)[/tex] -- This is another equivalent expression:
Solving further:
[tex](x-3)(x+3)(x+3)[/tex] becomes
[tex](x-3)(x+3)^2[/tex] -- This is another equivalent expression:
Hence, the equivalent expressions are:
[tex](x^2-3^2)(x+3)[/tex]
[tex](x-3)(x+3)(x+3)[/tex]
[tex](x-3)(x+3)^2[/tex]