Answer:
We get value of n=7
Step-by-step explanation:
If points lie on same line, they have same slope.
First we will find slope of points (3,5), (−1,3)
Using formula: [tex]Slope=\frac{y_2-y_1}{x_2-x_1}[/tex]
We have [tex]x_1=3, y_1=5, x_2=-1, y_2=3[/tex]
Finding slope
[tex]Slope=\frac{y_2-y_1}{x_2-x_1}\\Slope=\frac{3-5}{-1-3} \\Slope=\frac{-2}{-4} \\Slope=\frac{1}{2}[/tex]
Using slope 1/2 and points (−1,3), and (7,n) we can find value of n
[tex]Slope=\frac{y_2-y_1}{x_2-x_1}\\\frac{1}{2} =\frac{n-3}{7-(-1)} \\\frac{1}{2} =\frac{n-3}{7+1} \\\frac{1}{2} =\frac{n-3}{8}\\Cross\:Multiply\\1(8)=2(n-3)\\8=2n-6\\2n=8+6\\2n=14\\n=\frac{14}{2}\\n=7[/tex]
So, we get value of n=7