Blank 1: The Base Area (B) of the pyramid is _ cm2. --> Area = (1/2)ap


Blank 2: The height (h) of the pyramid is _ cm.


Blank 3: The Volume (V) of the pyramid is _ cm3.


Use the formula V = (1/3)Bh to find the volume of the hexagonal pyramid.

Respuesta :

Answer:

See Explanation

Step-by-step explanation:

The question is incomplete, as the dimensions of the hexagon are not given.

I will assume that:

[tex]b = 6[/tex] --- base length

[tex]h = 8[/tex] --- height

First, we calculate the height (a) of each triangle that makes the hexagonal base

The formula to use is:

[tex]a^2 = b^2 - (\frac{b}{2})^2[/tex]

[tex]a^2 = 6^2 - (\frac{6}{2})^2[/tex]

[tex]a^2 = 6^2 - (3)^2[/tex]

[tex]a^2 = 36 - 9[/tex]

[tex]a^2 = 27[/tex]

Take positive square roots

[tex]a = \sqrt{27[/tex]

Expand

[tex]a = \sqrt{9*3[/tex]

Split

[tex]a = \sqrt{9}*\sqrt3[/tex]

[tex]a = 3\sqrt3[/tex]

So, we have:

[tex]Area = \frac{1}{2}ap[/tex]

Where

[tex]a = 3\sqrt3[/tex]

[tex]p =perimeter[/tex]

[tex]p = 6 * b[/tex] ---- 6 represents the sides of the hexagon

[tex]p = 6 * 6[/tex]

[tex]p = 36[/tex]

[tex]B= \frac{1}{2}ap[/tex]

[tex]B= \frac{1}{2} * 3\sqrt 3 * 36[/tex]

[tex]B= 3\sqrt 3 *18[/tex]

[tex]B = 54\sqrt 3[/tex]

[tex]h = 8[/tex]

Lastly, the volume is:

[tex]V = \frac{1}{3}Bh[/tex]

So:

[tex]V = \frac{1}{3} * 54\sqrt3 * 8[/tex]

[tex]V = 18\sqrt3 * 8[/tex]

[tex]V = 144\sqrt3[/tex]