If you know the measure of one of the 8 angles, you can find the measure of all of the others. Try it. The measure of <1 = 120 degrees

Respuesta :

Answer:

[tex]\angle 2 =60[/tex]

[tex]\angle 3 = 60[/tex]

[tex]\angle 4 = 120[/tex]

[tex]\angle 5 = 120[/tex]

[tex]\angle 6 = 60[/tex]

[tex]\angle 7 = 60[/tex]

[tex]\angle 8 = 120[/tex]

Step-by-step explanation:

Given

[tex]\angle 1 = 120^\circ[/tex]

See attachment

Required

Determine the other angles

[tex]\angle 1[/tex] and [tex]\angle 2[/tex] are on a straight line.

So;

[tex]\angle 1 + \angle 2 =180[/tex]

Make [tex]\angle 2[/tex] the subject

[tex]\angle 2 =180 - \angle 1[/tex]

[tex]\angle 2 =180 - 120[/tex]

[tex]\angle 2 =60[/tex]

[tex]\angle 1[/tex] , [tex]\angle 4[/tex],  [tex]\angle 5[/tex] and [tex]\angle 8[/tex] are corresponding angles.

So;

[tex]\angle 4 =\angle 1 = 120[/tex]

[tex]\angle 5 =\angle 1 = 120[/tex]

[tex]\angle 8 =\angle 1 = 120[/tex]

Similarly; [tex]\angle 2[/tex] , [tex]\angle 3[/tex],  [tex]\angle 6[/tex] and [tex]\angle 7[/tex] are corresponding angles.

So;

[tex]\angle 3 =\angle 2 = 60[/tex]

[tex]\angle 6 =\angle 2 = 60[/tex]

[tex]\angle 7 =\angle 2 = 60[/tex]

Ver imagen MrRoyal