Respuesta :

Given:

The data table is given.

The equation of trend line is:

[tex]y=2x+15[/tex]

To find:

Values for residual table.

Solution:

Formula for residual:

[tex]Residual=\text{Observed value}-\text{Predicted value}[/tex]

The equation of trend line is:

[tex]y=2x+15[/tex]                ...(i)

Substituting [tex]x=5[/tex] in (i), we get

[tex]y=2(5)+15[/tex]

[tex]y=10+15[/tex]

[tex]y=25[/tex]

The value of y from the table at [tex]x=5[/tex] is 25. So,

[tex]Residual=25-25[/tex]

[tex]Residual=0[/tex]

Similarly,

Substituting [tex]x=6[/tex] in (i), we get

[tex]y=2(6)+15[/tex]

[tex]y=12+15[/tex]

[tex]y=27[/tex]

The value of y from the table at [tex]x=6[/tex] is 28. So,

[tex]Residual=28-27[/tex]

[tex]Residual=1[/tex]

Substituting [tex]x=7[/tex] in (i), we get

[tex]y=2(7)+15[/tex]

[tex]y=14+15[/tex]

[tex]y=29[/tex]

The value of y from the table at [tex]x=7[/tex] is 29. So,

[tex]Residual=29-29[/tex]

[tex]Residual=0[/tex]

Substituting [tex]x=8[/tex] in (i), we get

[tex]y=2(8)+15[/tex]

[tex]y=16+15[/tex]

[tex]y=31[/tex]

The value of y from the table at [tex]x=8[/tex] is 30. So,

[tex]Residual=30-31[/tex]

[tex]Residual=-1[/tex]

Substituting [tex]x=9[/tex] in (i), we get

[tex]y=2(9)+15[/tex]

[tex]y=18+15[/tex]

[tex]y=33[/tex]

The value of y from the table at [tex]x=9[/tex] is 32. So,

[tex]Residual=32-33[/tex]

[tex]Residual=-1[/tex]

Therefore, the complete residual table is:

x                 :          5            6             7             8             9

Residuals  :          0             1             0             -1            -1