Respuesta :

Space

Answer:

[tex]\displaystyle y' = - \csc (x) \big[ \cot^2 (x) + \csc^2 (x) \big][/tex]

General Formulas and Concepts:

Algebra I

Terms/Coefficients

  • Factoring

Functions

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Rule [Product Rule]:                                                                             [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle y = \csc (x) \cot (x)[/tex]

Step 2: Differentiate

  1. Derivative Rule [Product Rule]:                                                                     [tex]\displaystyle y' = \frac{d}{dx}[\csc (x)] \cot (x) + \csc (x) \frac{d}{dx}[\cot (x)][/tex]
  2. Trigonometric Differentiation:                                                                       [tex]\displaystyle y' = - \csc (x) \cot (x) \cot (x) + \csc (x) \big[ - \csc ^2 (x) \big][/tex]
  3. Simplify:                                                                                                         [tex]\displaystyle y' = - \csc (x) \cot^2 (x) - \csc^3 (x)[/tex]
  4. Factor:                                                                                                           [tex]\displaystyle y' = - \csc (x) \big[ \cot^2 (x) + \csc^2 (x) \big][/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation