Respuesta :

The two correct relationships are:

[tex]cos(\theta)=\frac{AB}{AC} = sin(90-\theta)\\\\sin(\theta)=\frac{BC}{AC} = cos(90-\theta)[/tex]

What is a right-angled triangle?

The triangle shown is a right-angled triangle

Considering <[tex](90-\theta)^o[/tex]

[tex]cos(90-\theta)=\frac{BC}{AC} \\\\sin(90-\theta)=\frac{AB}{AC}\\\\tan(90-\theta)=\frac{AB}{BC}[/tex]

Considering <[tex]\theta[/tex]

[tex]cos(\theta)=\frac{AB}{AC} \\\\sin\theta)=\frac{BC}{AC}\\\\tan(\theta)=\frac{BC}{AB}[/tex]

Comparing <[tex]\theta[/tex] and <[tex](90-\theta)^o[/tex], the true statements are:

[tex]cos(\theta)=\frac{AB}{AC} = sin(90-\theta)\\\\sin(\theta)=\frac{BC}{AC} = cos(90-\theta)[/tex]

Learn more on trigonometry here: https://brainly.com/question/20519838