Respuesta :

Lenvy

Answer:

x = -1, y = 1

Step-by-step explanation:

Given that:

[tex]\begin{bmatrix}4x+11y=7\\ 4x+3y=-1\end{bmatrix}[/tex]

Isolate x for 4x + 11y = 7 which ⇒ [tex]x=\frac{7-11y}{4}[/tex]

Substitute [tex]x=\frac{7-11y}{4}[/tex] into the equation: which is:

[tex]\begin{bmatrix}4\cdot \frac{7-11y}{4}+3y=-1\end{bmatrix}[/tex]

Drop Down to:

[tex]\begin{bmatrix}7-8y=-1\end{bmatrix}[/tex]

Isolate y for 7-8y = -1: y = 1

Thus, [tex]x=\frac{7-11y}{4}[/tex]

Substitute y = 1

Hence,

[tex]x=\frac{7-11\cdot \:1}{4}=-1[/tex]

Solution ⇒ x = -1 and y = 1

~learn with lenvy~

Answer:

x = -1 , y = 1

Step-by-step explanation:

Starting with x

x = 7 - 11y/4

4 × 7-11y/4 + 3y = -1

7 - 8y = -1

Now for y

7-8y = -1 ⇒ y = 1

Hence, x = -1 and y = 1

[RevyBreeze]