Drag each expression to show whether the expression is equivalent to 35x−20, 40x+16, or neither.

Answer:
the ones that you would drag on the 35x-20 should be 5(7x-4) and 5(-4+7x).
For the 40x+16 should be 4(10x+4) and 2(8+20x) and for the neither one it should be 2(10x+8) so hopefully that is the correct answer for all of them
Step-by-step explanation:
Answer:
4(10x+4) ⇒ 40x + 16
2(8+20x) ⇒ 40x + 16
5(7x-4) ⇒ 35x - 20
5(-4+7x) ⇒ 35x - 20
2(10x+8) ⇒ 20x + 16 Neither
Step-by-step explanation:
Given Expression:
4(10x+4)
2(8+20x)
5(7x-4)
5(-4+7x)
2(10x+8)
Solve:
4(10x+4) ⇒ 40x + 16 {4 · 10x = 40} {4 · 4 = 16}
2(8+20x) ⇒ 40x + 16 {2 · 8 = 16 } {20 · 2 = 40x}
5(7x-4) ⇒ 35x - 20 { 5 · 7x = 35x} {5 · - 4 = -20}
5(-4+7x) ⇒ 35x - 20 { 5 · -4 = -20 } {5 · 7x = 35x}
2(10x+8) ⇒ 20x + 16 {2 · 10x = 20x} { 2 · 8 = 16}
Hence,
4(10x+4) ⇒ 40x + 16
2(8+20x) ⇒ 40x + 16
5(7x-4) ⇒ 35x - 20
5(-4+7x) ⇒ 35x - 20
2(10x+8) ⇒ 20x + 16 Neither
Kavinsky