Respuesta :

Answer:

-21844

Step-by-step explanation:

Finding n

  • aₙ = arⁿ⁻¹
  • -16384 = -4(4)ⁿ⁻¹
  • 4ⁿ⁻¹ = 4096
  • 4ⁿ⁻¹ = 64²
  • 4ⁿ⁻¹ = (8²)²
  • 4ⁿ⁻¹ = (4³)²
  • n - 1 = 6
  • n = 7

Finding The Sum

  • S₇ = -4(4⁷ - 1) / 4 - 1
  • S₇ = -4 (16383) / 3
  • S₇ = -65536/3
  • S₇ = -21844

Answer:

-21844

Step-by-step explanation:

Given:

  • [tex]a_1=-4[/tex]
  • [tex]a_n=-16384[/tex]
  • [tex]r=4[/tex]

First find n by using the general form of a geometric sequence: [tex]a_n=ar^{n-1}[/tex]   (where a is the first term and r is the common ratio)

[tex]\implies -16384=(-4)(4)^{n-1}[/tex]

[tex]\implies 4^{n-1}=\dfrac{-16384}{-4}[/tex]

[tex]\implies 4^{n-1}=4096[/tex]

[tex]\implies \ln 4^{n-1}=\ln 4096[/tex]

[tex]\implies (n-1)\ln 4=\ln 4096[/tex]

[tex]\implies n=\dfrac{\ln 4096}{\ln 4}+1[/tex]

[tex]\implies n=6+1[/tex]

[tex]\implies n=7[/tex]

Sum of the first n terms of a geometric series:

[tex]S_n=\dfrac{a(1-r^n)}{1-r}[/tex]

(where a is the first term and r is the common ratio)

Substituting the given values and the found value of n into the formula:

[tex]\implies S_{7}=\dfrac{(-4)(1-4^7)}{1-4}[/tex]

[tex]\implies S_{7}=-21844[/tex]