Respuesta :

Swapping rows alters the sign of the determinant:

[tex]\begin{vmatrix} x & y & z \\ -8 & 2 & -12 \\ u & v & w \end{vmatrix} = - \begin{vmatrix} x & y & z \\ u & v & w \\ -8 & 2 & -12 \end{vmatrix}[/tex]

Multiplying a single row by a scalar scales the determinant by the same amount:

[tex]\begin{vmatrix} x & y & z \\ u & v & w \\ -8 & 2 & -12 \end{vmatrix} = -2 \begin{vmatrix} x & y & z \\ u & v & w \\ 4 & -1 & 6 \end{vmatrix}[/tex]

Then

[tex]\begin{vmatrix} x & y & z \\ -8 & 2 & -12 \\ u & v & w \end{vmatrix} = -(-2) \begin{vmatrix} x & y & z \\ u & v & w \\ 4 & -1 & 6 \end{vmatrix} = 2\times(-6) = \boxed{-12}[/tex]