Respuesta :

Hello !

We solve this system:

[tex]\begin{cases} 2y + 2 &=3y - 9 \: \: \: \: (1)\\ 3x + 6 &=y + 4 \end{cases}[/tex]

[tex](1) : 2y + 2 = 3y - 9 \\ - y + 2 = - 9 \\ - y = - 11\\ y = 11[/tex]

We replace y by 11 in the second equation:

[tex]3x + 6 = 11 + 4 \\ 3x + 6 = 15 \\ 3x = 9 \\ x = \frac{9}{3} = 3[/tex]

_____________

[tex]x = 3[/tex]

[tex]y = 11[/tex]

Have a nice day ;)

Answer:

x = 3

y = 11

Step-by-step explanation:

Since DRWH is a parallelogram

Then ,the opposite sides are congruent

Then , DR = HW and DH = RW

………………………………………………

DR = HW

⇔ 2y + 2 = 3y - 9

⇔ 9 + 2 = 3y - 2y

⇔ 11 = y

⇔ y = 11

DH = RW

⇔ 3x + 6 = y + 4

⇔ 3x + 6 = 11 + 4

⇔ 3x + 6 = 15

⇔ 3x = 15 - 6

⇔ 3x = 9

⇔ x = 9/3

⇔ x = 3