What is the value of x and y

Hello !
We solve this system:
[tex]\begin{cases} 2y + 2 &=3y - 9 \: \: \: \: (1)\\ 3x + 6 &=y + 4 \end{cases}[/tex]
[tex](1) : 2y + 2 = 3y - 9 \\ - y + 2 = - 9 \\ - y = - 11\\ y = 11[/tex]
We replace y by 11 in the second equation:
[tex]3x + 6 = 11 + 4 \\ 3x + 6 = 15 \\ 3x = 9 \\ x = \frac{9}{3} = 3[/tex]
_____________
[tex]x = 3[/tex]
[tex]y = 11[/tex]
Have a nice day ;)
Answer:
x = 3
y = 11
Step-by-step explanation:
Since DRWH is a parallelogram
Then ,the opposite sides are congruent
Then , DR = HW and DH = RW
………………………………………………
DR = HW
⇔ 2y + 2 = 3y - 9
⇔ 9 + 2 = 3y - 2y
⇔ 11 = y
⇔ y = 11
DH = RW
⇔ 3x + 6 = y + 4
⇔ 3x + 6 = 11 + 4
⇔ 3x + 6 = 15
⇔ 3x = 15 - 6
⇔ 3x = 9
⇔ x = 9/3
⇔ x = 3