Answer:
14[tex]\frac{2}{3}[/tex]
Step-by-step explanation:
Make equivalent fractions with all the same denominator. Let's us 12 as our common denominator
[tex]\frac{1}{3}[/tex] x [tex](\frac{4}{4})[/tex] = [tex]\frac{4}{12}[/tex] Another name for [tex]\frac{4}{4}[/tex] is 1. (4 divided by 4 is 1) I am just making an equivalent fraction of [tex]\frac{1}{3}[/tex]
[tex]\frac{3}{4}[/tex] x [tex](\frac{3}{3})[/tex] = [tex]\frac{9}{12}[/tex] another name for [tex]\frac{3}{3}[/tex] is 1 (3 divided by 3 is 1) I am just making an equivalent fraction of [tex]\frac{3}{4}[/tex].
Now that my denominators are all the same size I can see how many 12's I have.
6 [tex]\frac{4}{12}[/tex] + 4 [tex]\frac{9}{12}[/tex] + 3 [tex]\frac{7}{12}[/tex] I can rearrange this to add all the whole numbers together and all of the fractions together.
6 + 4 + 3 = 13
[tex]\frac{4}{12}[/tex] + [tex]\frac{9}{12}[/tex] + [tex]\frac{7}{12}[/tex] = [tex]\frac{20}{12}[/tex] I have 20 12ths. every [tex]\frac{12}{12}[/tex] makes another whole, so
[tex]\frac{20}{12}[/tex] 1 whole with [tex]\frac{8}{12}[/tex] Left over. If we put this all together, we have
13 + 1 + [tex]\frac{8}{12}[/tex]
14 [tex]\frac{8}{12}[/tex] To simplify this. I will divide [tex]\frac{8}{12}[/tex] ÷ [tex]\frac{4}{4}[/tex] = [tex]\frac{2}{3}[/tex].
the final answer is 14 [tex]\frac{2}{3}[/tex]