Respuesta :

Answer:

14[tex]\frac{2}{3}[/tex]

Step-by-step explanation:

Make equivalent fractions with all the same denominator.  Let's us 12 as our common denominator

[tex]\frac{1}{3}[/tex] x [tex](\frac{4}{4})[/tex] = [tex]\frac{4}{12}[/tex]  Another name for [tex]\frac{4}{4}[/tex] is 1.  (4 divided by 4 is 1)  I am just making an equivalent fraction of [tex]\frac{1}{3}[/tex]

[tex]\frac{3}{4}[/tex] x [tex](\frac{3}{3})[/tex] = [tex]\frac{9}{12}[/tex] another name for [tex]\frac{3}{3}[/tex] is 1 (3 divided by 3 is 1)  I am just making an equivalent fraction of [tex]\frac{3}{4}[/tex].

Now that my denominators are all the same size I can see how many 12's I have.

6 [tex]\frac{4}{12}[/tex] + 4 [tex]\frac{9}{12}[/tex] + 3 [tex]\frac{7}{12}[/tex]  I can rearrange this to add all the whole numbers together and all of the fractions together.

6 + 4 + 3 = 13

[tex]\frac{4}{12}[/tex] + [tex]\frac{9}{12}[/tex] + [tex]\frac{7}{12}[/tex] = [tex]\frac{20}{12}[/tex]  I have 20 12ths.  every [tex]\frac{12}{12}[/tex] makes another whole, so

[tex]\frac{20}{12}[/tex]  1 whole with [tex]\frac{8}{12}[/tex] Left over.  If we put this all together, we have

13 + 1  + [tex]\frac{8}{12}[/tex]

14 [tex]\frac{8}{12}[/tex]  To simplify this.  I will divide [tex]\frac{8}{12}[/tex] ÷ [tex]\frac{4}{4}[/tex] = [tex]\frac{2}{3}[/tex].

the final answer is 14 [tex]\frac{2}{3}[/tex]