According to the Rational Root Theorem, which number is a potential root of f(x) = 9x8 + 9x6 – 12x + 7?

A. 0
B. 1/7
C. 2 (It's not this one I tried)
D. 7/3

Respuesta :

It is D. 7/3 because the rational root theorem states that when a root 'x' is written as a fraction x = p/q in lowest terms, p is an integer factor of the constant term (i.e. 7), and q is an integer factor of the coefficient of the first monomial (i.e. 9x^8).

Answer-

[tex]\boxed{\boxed{\frac{7}{3}}}[/tex]

Solution-

Rational Root Theorem-

[tex]f(x)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+.......+a_1x+a_0\ \ \ and\ a_n\neq 0[/tex]

All the potential rational roots are,

[tex]=\pm (\dfrac{\text{factors of}\ a_0}{\text{factors of}\ a_n})[/tex]

The given polynomial is,

[tex]f(x) = 9x^8 + 9x^6-12x + 7[/tex]

Here,

[tex]a_n=9,\ a_0=7\\\\\text{factors of}\ 9=1,3,9\\\\\text{factors of}\ 7=1,7[/tex]

The potential rational roots are,

[tex]=\pm \frac{1}{1},\pm \frac{1}{3}, \pm \frac{1}{9}, \pm \frac{7}{1}, \pm \frac{7}{3}, \pm \frac{7}{9}[/tex]

[tex]=\pm 1,\pm \frac{1}{3}, \pm \frac{1}{9}, \pm 7, \pm \frac{7}{3}, \pm \frac{7}{9}[/tex]

From, the given options only [tex]\frac{7}{3}[/tex] satisfies.