Respuesta :
The balanced equation represents the reaction ratio, using the unit mol. So when knowing the gram formula mass of these three molecules, we can easily known the answer. First is 2.50 g. Second: 6.61 mol. Third: 3.65 g. Forth: 1.5 mol.
Explanation:
[tex]6Li(s)+N_2(g)\rightarrow 2Li_3N(s)[/tex]
1. Mass of [tex]N_2[/tex] needed to react with 0.536 moles of Li.
According to reaction, 6 moles of Li reacts with 1 mol of [tex]N_2[/tex].
Then 0.536 moles of Li will react with:
[tex]\frac{1}{6}\times 0.536[/tex] moles of [tex]N_2[/tex] that is 0.0893 moles.
Mass of [tex]N_2[tex] gas needed:
[tex]=28 g/mol\times 0.0893 mol=2.5004 g[/tex]
2.The number of moles of Li required to make 46.4 g of [tex]Li_3N[/tex]
Moles of [tex]Li_3N=\frac{46.4 g}{35 g/mol}=1.3257 mol[/tex]
According to reaction the 2 moles of [tex]Li_3N[/tex] are produced from 6 moles of Li.
Then 1.3257 moles of [tex]Li_3N[/tex] will produced from:
[tex]\frac{6}{2}\times 1.3257=3.9771 moles[/tex]
3.9771 moles of lithium will needed.
3. The mass in grams of [tex]Li_3N[/tex] produced from 3.65 g Li.
Moles of Li [tex]=\frac{3.65 g}{7 g/mol}=0.5214 moles[/tex]
According to reaction, 6 moles of Li gives 2 moles of [tex]Li_3N[/tex]
Then 0.5214 moles of Li will give [tex]\frac{2}{6}\times 0.5214[/tex] that is 0.1738 moles of [tex]Li_3N[/tex].
Mass of[tex]Li_3N=0.1738 mole\times 35 g/mol=6.083 g[/tex]
6.083 grams of [tex]Li_3N[/tex] will be produced.
4. The number of moles of lithium needed to react with 7.00 grams of [tex]N_2[/tex].
Moles of [tex]N_2=\frac{7.00 g}{28 g/mol}=0.25 moles[/tex]
1 mol of [tex]N_2[/tex] reacts with 6 mol of Li
Then, 0.25 moles of [tex]N_2[/tex] will ftreact with :
[tex]6\times 0.25 moles=1.5 moles[/tex] of lithium
1.5 moles of Li will be needed.