Using the Rational Root Theorem, what are all the rational roots of the polynomial f(x) = 20x4 + x3 + 8x2 + x – 12?

-4/5 and 3/4

-4/5 and -3/4

-1, -4/5, 3/4 and 1

-1. -4/5, -3/4 and 1

Respuesta :

Answer:

Option 1 is correct.

Step-by-step explanation:

The given polynomial is

[tex]f(x)=20x^4+x^3+8x^2+x-12[/tex]

we have to find  all the rational roots of the polynomial f(x)

The Rational Root Theorem states that the all possible roots of a polynomial are in the form of a rational number i.e in the form of [tex]\frac{p}{q}[/tex]

where p is a factor of constant term and q is the factor of coefficient of leading term.

In the given polynomial the constant is -12 and the leading coefficient is 20.

[tex]\text{All possible factor of -12 are }\pm1,\pm2, \pm3, \pm4,\pm6,\pm12[/tex]

[tex]\text{All possible factor of 20 are }\pm1,\pm2,\pm4,\pm5,\pm10,\pm20[/tex]

So, the all possible rational roots of the given polynomial are,

[tex]\pm1,\pm2, \pm3, \pm4,\pm6,\pm12,\pm\frac{1}{2},\pm\frac{3}{2},\pm\frac{1}{4},\pm\frac{3}{4},\pm\frac{1}{10},\pm\frac{1}{5},\pm\frac{3}{5},\pm\frac{3}{10},\pm\frac{2}{5},\pm\frac{6}{5},\pm\frac{1}{20},\pm\frac{3}{20},\pm\frac{4}{5},\pm\frac{12}{5}[/tex]

Now, the rational roots of polynomial satisfy the given polynomial

[tex]f(-\frac{4}{5})=20(-\frac{4}{5})^4+(-\frac{4}{5})^3+8(-\frac{4}{5})^2-\frac{4}{5}-12=\frac{256}{625}\times 20-\frac{64}{125}+\frac{128}{125}-\frac{4}{5}-12[/tex]

[tex]=\frac{1024}{125}-\frac{64}{125}+\frac{128}{25}-\frac{4}{5}-12[/tex]

[tex]=\frac{960}{125}+\frac{128}{25}-\frac{4}{5}-12=12-12=0[/tex]

Hence, rational root.

[tex]f(\frac{3}{4})=20(\frac{3}{4})^4+(\frac{3}{4})^3+8(\frac{3}{4})^2+\frac{3}{4}-12=\frac{405}{64}+\frac{27}{64}+\frac{9}{2}+\frac{3}{4}-12=0[/tex]

rational root

[tex]f(1)=20(1)^4+(1)^3+8(1)^2+1-12=20+1+8-11=18\neq 0[/tex]

not a rational root.

hence, option 1 is correct

Answer:

The first option

Step-by-step explanation:

Right on edg:)