Respuesta :

The answer on E2020 is A: (11.7, -20)

The polar coordinates is [tex](12, \frac{\pi }{9})[/tex].

What is polar coordinate system?

The polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction.

How to convert rectangular coordinates to polar coordinates?

To convert rectangular coordinate (x, y) to polar coordinate(r, θ) by using some formula

tanθ = y/x and [tex]r=\sqrt{x^{2} +y^{2} }[/tex]

According to the given question

We have a rectangular coordinates (11, -4)

⇒ x = 11 and y = -4

Therefore,

[tex]r=\sqrt{(11)^{2}+(-4)^{2} }[/tex]

⇒ [tex]r =\sqrt{121+16} =\sqrt{137} =11.7[/tex]

⇒ [tex]r =12[/tex]

And,

tanθ = [tex]\frac{y}{x}[/tex]

⇒tanθ =[tex]\frac{-4}{11}[/tex]

⇒tanθ = -0.36

⇒ θ =[tex]tan^{1} (-0.36)[/tex]

⇒ θ = 19.8 degrees Or θ = 20 degrees

⇒ θ = [tex]\frac{\pi }{9}[/tex]

Therefore, the polar coordinates is [tex](12, \frac{\pi }{9})[/tex].

Learn more about polar coordinates here:

https://brainly.com/question/24335454

#SPJ2