Suppose the line of best fit for some data points has a slope of 2.334. If the mean of the x-coordinates of the data points is 6.607, and the mean of the y-coordinates is 10.738, what is the y-intercept of the line to three decimal places?

Respuesta :

-4.683

















apex, apex, apex, apex

Answer:

The y-intercept of the line is −4.683.

Step-by-step explanation:

Given information: Slope = 2.334, [tex]\overline{x}=6.607[/tex] and [tex]\overline{y}=10.738[/tex].

The general equation of line of best fit is

[tex]y=a+bx[/tex]

where, a is y-intercept and b is slope.

[tex]b=\frac{\sum_{i=1}^nx_iy_i-n\overline{x}\overline{y}}{\sum_{i=1}^nx_i^2-n\overline{x}^2}[/tex]

[tex]a=\overline{y}-b\overline{x}[/tex]

We need to find the value of y-intercept (value of a).

Substitute [tex]\overline{x}=6.607[/tex],  [tex]\overline{y}=10.738[/tex] and b=2.334 in the above equation.

[tex]a=10.738-2.334(6.607)[/tex]

[tex]a=10.738-15.420738[/tex]

[tex]a=-4.682738[/tex]

[tex]a\approx -4.683[/tex]

Therefore the y-intercept of the line is −4.683.