Respuesta :

Answer: [tex]\text{m}\angle E=55^{\circ}[/tex].

Explanation:

We are given that,

In △EFG,

[tex]\overline{GE}\cong \overline{FG}[/tex]

[tex]\text{m}\angle F = 55^{\circ}[/tex]

To find: [tex]\text{m}\angle E[/tex]

As we know that, angles opposite to the congruent sides of a triangle are congruent.

Thus, In △EFG

if [tex]\overline{GE}\cong \overline{FG}[/tex] and [tex]\text{m}\angle F = 55^{\circ}[/tex]

then it implies [tex]\text{m}\angle F =\text{m}\angle E= 55^{\circ}[/tex]

Hence, we get [tex]\text{m}\angle E=55^{\circ}[/tex].