Answer: [tex]\text{m}\angle E=55^{\circ}[/tex].
Explanation:
We are given that,
In △EFG,
[tex]\overline{GE}\cong \overline{FG}[/tex]
[tex]\text{m}\angle F = 55^{\circ}[/tex]
To find: [tex]\text{m}\angle E[/tex]
As we know that, angles opposite to the congruent sides of a triangle are congruent.
Thus, In △EFG
if [tex]\overline{GE}\cong \overline{FG}[/tex] and [tex]\text{m}\angle F = 55^{\circ}[/tex]
then it implies [tex]\text{m}\angle F =\text{m}\angle E= 55^{\circ}[/tex]
Hence, we get [tex]\text{m}\angle E=55^{\circ}[/tex].